

AGRICULTURAL RESEARCH COUNCIL

WATER USE AND CROP PERFORMANCE OF MORINGA UNDER DRIP AND SELF-REGULATING, LOW ENERGY, CLAY BASED IRRIGATION (SLECI) SYSTEMS

<u>Hunadi Abigail Chaba</u>, Martin Steyn, Hintsa Araya, Simon Maleka, Nadia Araya, Christian Du Plooy and Mariette Truter

Introduction

- *Moringa oleifera* Lam. is a perennial tropical deciduous tree.
- It is widely distributed in many tropical and subtropical countries.
- It is well known as the "miracle tree".
- Almost all parts of *M. oleifera* Lam can be utilized as a source of edible food.
- Intensive cultivation with good irrigation practices will give improved yield.

Introduction

- Water scarcity is considered a limiting factor.
- Because of the often inadequate and uneven distribution of rainfall in South Africa.
- Water saving irrigation technologies.
- Especially within SHF enterprises.
- Therefore, irrigation, such as subsurface irrigation called a SLECI.

Introduction Cont....

- The **SLECI** technology is a
- Self-regulating
- Low
- Energy
- Clay based
- Irrigation
- System.

Objectives

- To evaluate the growth and yield performance of Moringa using four irrigation systems (standard drip, subsurface drip irrigation and Sleci irrigation system).
- To evaluate the water-use efficiency of the four tested irrigation systems (standard drip irrigation system, subsurface drip irrigation system and SLECI irrigation system).

Materials and Methods

Location: Open field trial was conducted from November 2022 to May 2023 at the Agricultural Research Council's Vegetable, Industrial, and Medicinal Plants (ARC-VIMP).

Materials and Methods

- Moringa (Moringa oleifera) was planted to investigate the growth performance using four irrigation systems (standard drip, subsurface drip and SLECI irrigation system).
- The standard and subsurface irrigation systems used a pressure-regulated drip irrigation tube with an application rate of 2.3 l h⁻¹ and emitters spaced at 0.3 m width.
- The pipes for the subsurface drip irrigation and SLECI irrigation systems were installed 30 cm below the surface.
- Water meters were installed for each irrigation system to monitor water flow rate.

Conclusions and recommendations

- SLECI showed significant potential to minimize water loss by evaporation, runoff and percolation and can be considered as a promising new irrigation technology to increase water use efficiency, especially for perennial crops like moringa.
- Small holder farmers are encouraged to use a SLECI irrigation system because it reduces water use and increases yield, allowing water to be available to other economic sectors.

Acknowledgements

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

The European Union's Horizon 2020 Research and Innovation Programme